SynGAP-MUPP1-CaMKII Synaptic Complexes Regulate p38 MAP Kinase Activity and NMDA Receptor-Dependent Synaptic AMPA Receptor Potentiation

Grigory Krapivinsky,1 Igor Medina,2 Luba Krapivinsky,1 Svetlana Gapon,1 and David E. Clapham1,*
1Howard Hughes Medical Institute
Children’s Hospital
1309 Enders Building
320 Longwood Avenue
Boston, Massachusetts 02115
2INMED/INSERM Unite 29
163 Route de Luminy
13009 Marseille
France

Summary

The synapse contains densely localized and interacting proteins that enable it to adapt to changing inputs. We describe a Ca2+-sensitive protein complex involved in the regulation of AMPA receptor synaptic plasticity. The complex is comprised of MUPP1, a multi-PDZ domain-containing protein; SynGAP, a synaptic GTPase-activating protein; and the Ca2+/calmodulin-dependent kinase CaMKII. In synapses of hippocampal neurons, SynGAP and CaMKII are brought together by direct physical interaction with the PDZ domains of MUPP1, and in this complex, SynGAP is phosphorylated. Ca2+ binding to CaMKII dissociates it from the MUPP1 complex, and Ca2+ entering via the NMDAR drives the dephosphorylation of SynGAP. Specific peptide-induced SynGAP dissociation from the MUPP1-CaMKII complex results in SynGAP dephosphorylation accompanied by p38 MAPK inactivation, potentiation of synaptic AMPA responses, and an increase in the number of AMPAR-containing clusters in hippocampal neuron synapses. siRNA-mediated SynGAP knockdown confirmed these results. These data implicate SynGAP in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking.

Introduction

Hippocampal learning and memory rely on activity-dependent synaptic plasticity. In the long-term potentiation (LTP) and depression (LTD) models of synaptic plasticity, brief periods of repetitive synaptic activity lead to sustained changes in synaptic transmission. The critical events in plasticity are NMDA receptor activation and the elevation of postsynaptic [Ca2+] during repetitive synaptic activity. Recent studies argue that the NMDAR-dependent trafficking of postsynaptic AMPA-sensitive glutamate receptors (AMPAR) is a key element in plasticity (Luscher et al., 1999; Shi et al., 1998; Hayashi et al., 2000; Lu et al., 2001; Zhu et al., 2002; see Malinow, 2003, for a recent review). Ca2+/calmodulin-dependent kinase II (CaMKII), the small Ras family GTPases Ras and Rap, ERK and p38 MAP kinases, PI3 kinase, and other molecules participate in the regulation of NMDAR-dependent AMPA receptor trafficking to synapses (Zhu et al., 2002; Man et al., 2003). Overexpression of dominant-negative and constitutively active forms of small GTPases supports the notion that a Ras-dependent pathway increases, while a Rap-dependent pathway decreases, the number of active AMPARs in postsynaptic membranes (Zhu et al., 2002). However, the molecular mechanisms linking NMDA receptor activation with Ras and Rap GTPases are poorly understood.

Two Ca2+-dependent signaling Ras effector molecules, RasGRF1 and SynGAP, are candidates for linking NMDA receptor activation and Ca2+ influx with Ras GTPases (Platenik et al., 2000). Recently, we showed that the Ca2+/CaM-dependent GTP/GDP exchanger RasGRF1 was responsible for NMDAR (NR2B)-dependent activation of ERK kinases (Krapivinsky et al., 2003), but what is the Ca2+-dependent role of SynGAP? SynGAP is localized to postsynaptic densities (Chen et al., 1998; Kim et al., 1998) and phosphorylated in vitro by Ca2+-dependent CaMKII. Controversial in vitro data suggested that direct SynGAP phosphorylation by CaMKII regulated its activity (Chen et al., 1998; Oh et al., 2002; Oh et al., 2004). Multiple SynGAP splice variants have been found (Kim et al., 1998; Li et al., 2001). SynGAP-Δα has a PDZ binding motif on its C terminus and does not directly bind CaMKII; SynGAP-β lacks a C-terminal PDZ binding consensus and directly binds CaMKII (Li et al., 2001). Disruption of the SynGAP gene results in postnatal lethality, while heterozygous mice display defects in LTP (Komiyama et al., 2002; Kim et al., 2003). Clearly, SynGAP plays an important role in the synapse.

The tethering of signaling molecules within the NMDAR complex localizes them to the high [Ca2+] domain near the channel pore and organizes Ca2+-activated downstream responses. Scaffolding molecules such as PSD-95 structure macromolecular complexes in the postsynaptic density (Sheng and Sala, 2001). MUPP1, a large, ubiquitously expressed scaffolding protein, contains 13 homologous protein binding PDZ domains (Ullmer et al., 1998). Not surprisingly, MUPP1 interacts with many proteins, including the tight junction claudins (Polliak et al., 2002), tyrosine kinase receptors (Mancini et al., 2000), PIP2 binding proteins (Kimber et al., 2002), serotonin receptors (Parker et al., 2003), and neuronal Rho-GEF (Penzes et al., 2001).

Here we show that MUPP1 is a component of the NMDAR signaling complex in excitatory synapses of hippocampal neurons. Within this complex, MUPP1 directly binds SynGAP-Δα and CaMKII. Calmodulin binding dissociates CaMKII from the complex. In dormant neurons, SynGAP is phosphorylated in a CaMKII-dependent fashion. Upon NMDAR stimulation, Ca2+ entering the synapse dissociates CaMKII, and SynGAP is dephosphorylated. Disruption of the MUPP1-SynGAP complex with competitive peptides also results in SynGAP dephosphorylation, attenuates p38 MAP kinase activity, and increases the number of synapses containing func-
MUPP1 Directly Interacts with SynGAP-α

MUPP1 is highly expressed in brain and displays distinct expression patterns, including hippocampal localization (Sitek et al., 2003). Whole rat brain fractionation revealed that MUPP1 is highly enriched in the synaptosomes, specifically in postsynaptic densities (PSD) (Figure 1A). MUPP1 was localized to puncta on dendrites of cultured hippocampal neurons and colocalized with the synaptic marker PSD-95 (Figure 1B). Synaptosomal MUPP1 was not extractable with 2% Triton X-100 but was significantly solubilized with alkaline sodium deoxycholate (DOC). Since MUPP1 solubility was similar to the solubility of the NMDAR complex (Lau et al., 1996), we reasoned that it might be a component of this complex. In fact, the NR1 subunit of NMDA receptor and PSD-95, a component of the NMDAR complex (Kornau et al., 1995), specifically coimmunoprecipitated with MUPP1 (Figure 1D). This coimmunoprecipitation was blocked when MUPP1 antibodies were preabsorbed with specific antigens (data not shown).

The NMDAR complex contains numerous structural and signaling molecules (Husi et al., 2000). To determine which molecules might interact with MUPP1, a yeast two-hybrid screen of a human brain library was completed using multiple separate PDZ domains of MUPP1 as baits. A bait containing PDZ13 recovered five independent cDNA clones encoding the C-terminal portion of the synaptic RasGAP SynGAP-α. The shortest clone encoded a protein sequence that was identical to the last 111 amino acids of rat SynGAP-α (called SynGAP hereafter, accession number AF058780).

The interaction of MUPP1 and SynGAP was probed in vitro. The GST-tagged PDZ13 domain of MUPP1 and the His-tagged C-terminal 111 amino acids of SynGAP, expressed in bacteria and affinity purified, directly and specifically bound each other (Figure 2A). A GST fusion protein of the MUPP1 ninth PDZ domain did not bind SynGAP and served as the control. Full-length HA-tagged SynGAP and FLAG-tagged MUPP1 coexpressed in HEK293T cells formed a complex that coimmunoprecipitated SynGAP with MUPP1 (Figure 2B). Finally, MUPP1 and SynGAP were coimmunoprecipitated from solubilized rat brain microsomes (Figure 2C) and from 14-day-old primary cultures of dissociated rat neonatal hippocampal neurons (data not shown). These data suggest that PDZ13 of MUPP1 and SynGAP directly associate to form a molecular complex in native neurons.

MUPP1 and SynGAP Binding Domains

To determine functions that depend on the MUPP1-SynGAP interaction in live neurons, we developed tools to specifically disrupt this interaction. The advantage of this approach, as compared to disrupting the gene or overexpressing the protein, is that the interaction can be specifically targeted in vivo, without disturbing other components of the system or resulting in longer-term compensatory changes. Interacting fragments on both MUPP1 and SynGAP molecules were identified, and the peptides encoding these interacting fragments were tested for their ability to interfere with the MUPP1-SynGAP interaction. We employed the TAT peptide delivery system to incorporate TAT fusion proteins into entire populations of living neurons within minutes (for review, see Wadia and Dowdy, 2003).

The SynGAP C terminus contains the PDZ recognition motif QTXV (Hung and Sheng, 2002). To determine if this motif was essential for the interaction with MUPP1, we performed a pull-down assay of in vitro-translated SynGAP fragments with GST-PDZ13. Truncation of the last three amino acids of SynGAP significantly reduced but did not completely abolish the interaction of GST-PDZ13 with SynGAP (Supplemental Figure S1A [http://www.neuron.org/cgi/content/full/43/4/563/DC1]). This suggested that the region upstream of the canonical QTXV sequence may be important for stronger binding and specificity, allowing SynGAP to preferentially bind one PDZ domain among the many that are present. We tested this possibility in competition experiments. Fragments of the SynGAP C terminus were translated in vitro and tested for their potency in inhibiting the interaction of in vitro-translated full-length MUPP1 and SynGAP. Fusion proteins containing SynGAP (C terminal 33, 49, and 75 amino acids) did not inhibit the MUPP1-SynGAP interaction in vitro, and only the fragment con-
SynGAP Regulation of AMPA Receptors

Figure 2. MUPP1 and SynGAP Interact In Vitro and In Vivo

(A) Purified His-tagged SynGAP fragment containing 111 C-terminal amino acids (His-SynGAP111) specifically binds the MUPP1 thirteenth PDZ domain (fused with GST, GST-PDZ13) in pull-down assays. The ninth PDZ domain (GST-PDZ9) of MUPP1 and a His-TAT-tagged fragment of TRPV6 served as negative controls (Coomassie-stained gel).

(B) Interaction of full-length FLAG-MUPP1 and HA-SynGAP coexpressed in HEK293T cells. The cell lysate was immunoprecipitated with FLAG antibody and probed with α-HA.

(C) MUPP1 and SynGAP coimmunoprecipitated from solubilized rat brain synaptosomes. This coimmunoprecipitation was blocked when the immunoprecipitating antibody was preabsorbed with the appropriate antigenic peptide.

(D) TAT-SynGAP111 disrupted the MUPP1-SynGAP interaction in the native complex. MUPP1 was immunoprecipitated from rat brain synaptosomes with Mpdz4 in the presence of 5 μM TAT-SynGAP C-terminal fusion peptides. Coimmunoprecipitated SynGAP was detected by Western blot (TAT-SynGAP75 failed to express in bacteria and was not tested).

(E) TAT-PDZ13 disrupted the MUPP1-SynGAP interaction in the native complex. SynGAP was immunoprecipitated from rat brain synaptosomes with SynGAP antibody in the presence of 5 μM TAT-PDZ fusion peptides.

MUPP1-SynGAP Interactions Are Not Required for SynGAP Anchoring in the Synapse

As we showed in coimmunoprecipitation assays, TAT-PDZ13 disrupted MUPP1-SynGAP interactions, resulting in the dissociation of SynGAP from the native complex. We reasoned that this interaction could anchor SynGAP to the synapse, and we tested whether disruption of the MUPP1-SynGAP interaction affected SynGAP synaptic clustering in living neurons. Immunofluorescent staining of neurons confirmed that HA-tagged TAT fusion proteins penetrated cells within 10–15 min (data not shown). After 1 hr incubation with TAT proteins, cultured hippocampal neurons were fixed, and SynGAP immunofluorescent clusters were quantified with antibody specifically recognizing SynGAP-αHA. Since the average number of SynGAP clusters and the average intensity of fluorescence in the cluster were unchanged (Supplemental Figure S3), the MUPP1-SynGAP interaction does not appear to be critical for SynGAP synaptic localization. This suggests that, once localized, SynGAP is constrained in some fashion, perhaps by a protein other than MUPP1.

CaMKII-Dependent In Vivo SynGAP Phosphorylation

Chen et al. (1998) showed that SynGAP can be phosphorylated by CaMKII in vitro and hypothesized that Ca2+ entering the synapse through activated NMDARs would regulate SynGAP activity via CaMKII. Taking this data as a starting point, we examined SynGAP phosphorylation in vivo and tested whether its phosphorylation was dependent on the NMDAR and/or interactions with MUPP1. To monitor SynGAP phosphorylation in vivo, we metabolically labeled cultured hippocampal neurons with 32P under conditions in which excitatory inputs were blocked (in the presence of 1 μM TTX, 5 μM nimodipine, 100 μM APV, and 40 μM CNQX). Labeled cells were lysed, SynGAP was immunoprecipitated, and the incorporation of 32P into SynGAP was quantified. SynGAP immunoprecipitates revealed phosphorylated double bands that precisely matched the SynGAP Western blot images obtained from the same immunoprecipitates (Figure 3). The phosphorylated bands did not appear in immunoprecipitates using antibody preabsorbed...
with antigenic peptide. Thus, SynGAP is phosphorylated in cultured quiescent hippocampal neurons. Neuronal SynGAP phosphorylation was CaMKII dependent, since preexposure of neurons to the cell-permeable CaMKII inhibitor KN93 inhibited 80% of SynGAP phosphorylation (Figure 3B). The residual SynGAP phosphorylation could be that of incomplete CaMKII inhibition or tyrosine phosphorylation (Pei et al., 2001).

NMDA Receptor Activation Dephosphorylates SynGAP in Living Neurons

Strikingly, SynGAP was *dephosphorylated* by ~90% after stimulation of neurons with 50 μM glutamate or stimulation of synaptic inputs by application of 10 μM bicuculline (3 min bath application; Figure 3B). The NMDA receptor channel blocker MK801 prevented glutamate-stimulated SynGAP dephosphorylation, indicating that Ca²⁺ entering neurons via the NMDA receptor initiated this dephosphorylation (Figure 3B). The specific requirement of NMDAR activity for SynGAP dephosphorylation was supported by the observation that depolarization-induced activation of voltage-dependent Ca²⁺ channels did not change the extent of SynGAP phosphorylation (Figure 3B).

In Vivo Disruption of the SynGAP-MUPP1 Complex also Dephosphorylates SynGAP

To disrupt the MUPP1-SynGAP complex in cultured rat hippocampal neurons, cells were incubated with TAT-PDZ13 or TAT-SynGAP111 in the presence of TTX/nimodipine/APV/MK801/CNOX inhibitors to prevent Ca²⁺ influx. Exposure of the neurons for 30 min to 5 μM of either peptide resulted in almost complete SynGAP dephosphorylation (Figure 3C). This effect appears to be specific, since noncompetitive, homologous TAT peptides (TAT-PDZ12, TAT-PDZ9, and TAT-SynGAP49) did not alter SynGAP phosphorylation.

CaMKII Directly Binds MUPP1

Dissociation of SynGAP from MUPP1 resulted in SynGAP dephosphorylation, suggesting that close contact with CaMKII was required for the maintenance of CaMKII-mediated SynGAP phosphorylation. We next asked if CaMKII was in the MUPP1 complex. αSynGAP and αMUPP1 coimmunoprecipitated CaMKII from solubilized rat brain synaptosomes (Figure 4A). In control experiments, antibody preabsorption with antigenic peptides blocked this coimmunoprecipitation, and SynGAP and MUPP1 antibody did not immunoprecipitate heterologously expressed CaMKII (data not shown). FLAG-tagged MUPP1 coimmunoprecipitated CaMKIIα and CaMKIIβ when coexpressed in 293T cells (Figure 4B). In vitro-translated MUPP1 coimmunoprecipitated in vitro-translated CaMKIIα, but a MUPP1 fragment containing PDZ domains 8–13 did not bind CaMKII (Supplemental Figure S4A [http://www.neuron.org/cgi/content/full/43/4/563/DC1]). Further investigation of this interaction with GST fusion peptides containing PDZ domains 1–7 (Supplemental Figure S4B) showed that CaMKII most strongly interacts with MUPP1-PDZ2 and more weakly with PDZ5, -6, and -7. Finally, purified brain CaMKII specifically bound the purified PDZ2 domain (Figure 4C), confirming that CaMKII and MUPP1 interact directly. To verify that CaMKII-MUPP1 is a bona fide PDZ interaction, we mutated the PDZ signature sequence GLGF, which is critical for the binding of PDZ ligands (Doyle et al., 1998). CaMKII did not bind the PDZ2 domain when GLGF was mutated to PSES (Supplemental Figure S4C).

Typically, PDZ domains bind proteins via a four amino acid motif located on their C terminus (Hung and Sheng, 2002), but no such canonical PDZ motif is present on the CaMKII C terminus. Nevertheless, the CaMKII C terminus must be necessary for binding, since a CaMKII protein truncated after amino acid 290 (“constitutively active” CaMKII) did not bind MUPP1 (data not shown). PDZ domains can also interact with internal peptide sequences, as demonstrated by the binding of neuronal nitric oxide synthase (nNOS) to the PDZ domain of PSD-95 or syntrophin. A two-stranded hairpin “finger” of nNOS, formed by two short β sheets, docks the groove of the syntrophin PDZ domain (Tochio et al., 1999). Alignment of CaMKII and nNOS sequences revealed a striking
sequence similarity between the hairpin-forming β sheets of nNOS and the two short β sheets on the C terminus of CaMKII (Figure 4D). Replacing four amino acids in this region (CaMKIIa, amino acids 432–435, IRLT to MGTA) eliminated the second predicted β sheet and completely prevented the binding of CaMKII to MUPP1 (Figure 4E). This result suggested that, like nNOS, CaMKII binds its PDZ domain via an internal hairpin finger motif.

Ca2+/CaM Binding Releases CaMKII from MUPP1

The experiments so far are most simply interpreted as MUPP1 holding SynGAP and CaMKII in proximity. We speculate that this scaffolding allows CaMKII to phosphorylate (directly or indirectly) bound SynGAP-ζ in neurons in which excitatory Ca2+ influx is blocked. Given that both the disruption of the SynGAP-MUPP1 link and Ca2+ influx via the NMDAR resulted in SynGAP dephosphorylation, Ca2+ might dissociate one of the molecules from MUPP1. To examine this hypothesis, we first tested the effect of Ca2+/CaM on the SynGAP-CaMKII interaction in the native complex. Figure 4F shows that Ca2+/CaM dissociated the SynGAP-CaMKII interaction, leaving SynGAP complexed to MUPP1. Since CaMKII binds Ca2+/CaM, we tested whether Ca2+/CaM binding dissociated CaMKII from MUPP1. In vitro assays demonstrated that Ca2+/CaM-free but not Ca2+/CaM-bound CaMKII interacted with MUPP1 (Figure 4G). Ca2+ alone did not dissociate CaMKII from MUPP1, and Ca2+/CaM did not disrupt SynGAP’s interaction with MUPP1 (data not shown). Interestingly, the competitive CaMKII inhibitor KN93 binds to the same site as Ca2+/CaM and also dissociates CaMKII from MUPP1 (Figure 4G). These data suggest that simple occupation of a Ca2+/CaM binding site but not transition of CaMKII into its active state is sufficient to prevent CaMKII-MUPP1 binding. Thus, MUPP1 approximates SynGAP to CaMKII, resulting in SynGAP phosphorylation. Ca2+ entering the synapse via the NMDAR binds CaMKII and dissociates it from the MUPP1-SynGAP complex. SynGAP is then dephosphorylated by an undetermined phosphatase.

Disruption of SynGAP-MUPP1 Interaction Results in p38 MAP Kinase Inactivation

Both NMDAR-mediated Ca2+ influx and disruption of the SynGAP-MUPP1 interaction resulted in SynGAP dephosphorylation. We reasoned that SynGAP-MUPP1 dissociating peptides could be used as SynGAP modulators that mimic NMDAR activation, but without affecting other NMDAR-activated targets. SynGAP regulates the activity of the Ras, and in turn Ras regulates ERK MAP kinase activity (Iida et al., 2001). We tested whether disruption of the SynGAP-MUPP1 interaction affected ERK activity. ERK1 and ERK2 activities in cultured hippocampal neurons were measured by immunofluorescent staining of neurons using antibodies that specifically recognized the active (phosphorylated) form of ERK. Neuron exposure for 30–60 min to TAT-PDZ21 or TAT-SynGAP111 (5 μM) did not change basal or bicusculine-stimulated ERK activity in pyramidal neurons (Figure 5A). Surprisingly, both blocking peptides significantly attenuated the phosphorylation (activity) of p38 MAPK (Figure 5B), decreasing it to the same level reached after synaptic stimulation. This result implicates SynGAP in the regulation of p38
Figure 5. SynGAP Dissociation from the MUPP1-CaMKII Complex Does Not Affect ERK Activity and Attenuates the Activity of P38-MAPK

(A) Double immunofluorescence staining of 14 d.i.v. neurons with neuronal-specific Map2 antibody (bottom rows) and phospho-ERK antibody (upper row). Data are shown for control conditions (see Experimental Procedures) and after 5 min incubation with 10 μM bicuculline and 10 μM glycine. The bar graph illustrates the average effect of cell-permeable peptides (5 μM, 30 min, n = 6) and SynGAP-α siRNA (5–6 days posttransfection, n = 4) on ERK activity.

(B) Images and normalized fluorescence of neurons double stained with Map2 antibody (bottom rows) and phospho-p38 MAP Kinase antibody (upper row). Population data summarize the effect of cell-permeable peptides (5 μM, 30 min, n = 6) and SynGAP-α siRNA (5–6 days posttransfection, n = 4) on p38 MAPK activity. Asterisks indicate values significantly different from control p < 0.01 in both (A) and (B).

MAPK activity. To test this conclusion using an independent method, siRNA was targeted to a SynGAP-α-specific coding region (bases 3605–3623 of the AF058790 coding sequence). In cultured hippocampal neurons 5–6 days after transfection, the SynGAP protein level dropped to <10% of that in neurons transfected with nonsilencing RNA (Supplemental Figure S5 [http://www.neuron.org/cgi/content/full/43/4/563/DC1]). SynGAP knockdown resulted in a marked increase in p38MAPK activity without affecting ERK activity (Figure 5), verifying the role of SynGAP in the pathway governing p38 MAPK activity. Since SynGAP knockdown (equivalent to attenuation of SynGAP activity) augments p38 MAPK and SynGAP dissociation from MUPP1 decreases its activity, we conclude that dissociated and dephosphorylated SynGAP is more active than the phosphorylated SynGAP in the MUPP1-CaMKII complex.

SynGAP Predominantly Activates Rap GTPase Activity

P38 MAPK activity is regulated by multiple upstream signals including the small GTPases Rac, Ras, and Rap (Salojin et al., 1999; Palsson et al., 2000). In hippocampal neurons, p38 MAPK activity was regulated by Rap but not Ras activity (Zhu et al., 2002). Since earlier SynGAP activity was only tested with Ras (Chen et al., 1998), we compared SynGAP’s effect on Ras and Rap GTPase activity using an in vitro assay. As shown on the Figures 6A and 6B, SynGAP stimulated Rap GTPase activity much more potently than Ras GTPase activity (2-fold maximum stimulation of Ras GTPase compared to a 10-fold stimulation of Rap GTPase). Moreover, Rap GTPase activity increased linearly with SynGAP concentration, whereas Ras GTPase activity scarcely changed over the same concentration range (Figure 6C). Both Rap1 and
SynGAP Regulation of AMPA Receptors

569

tentiates the AMPAR response in postsynaptic neurons. Similar results were obtained using TAT-fused peptides in the pipette (data not shown). Since all biochemical experiments were carried out with extracellular application of the membrane-permeant TAT peptides, we also tested these peptides on AMPA mEPSCs. The extracellular application of TAT-PDZ13 and TAT-SynGAP111 peptides also induced a relatively rapid (4–5 min) and long-lasting increase in the frequency and amplitude of AMPAR-mediated mEPSCs (data not shown). Potentiation of the AMPA response could be related to changes in the AMPAR phosphorylation state or membrane targeting (Gomes et al., 2003). Therefore, we used immunofluorescent labeling to determine if disruption of the MUPP1-SynGAP interaction modified the number of GluR synaptic clusters.

Cultured hippocampal neurons exposed to TAT-PDZ13 or TAT-SynGAP111 showed a significant increase in the number of GluR1- and GluR2,3-positive clusters compared to control untreated neurons and neurons incubated with TAT-PDZ12 or TAT-SynGAP49 (Figure 7C). The number of NR1 clusters did not increase significantly during these experiments (Figure 7C), indicating that the total number of excitatory synapses was not changed. These results demonstrate that disruption of the SynGAP-MUPP1 interaction results in an increase in the number of postsynaptic AMPARs and support the hypothesis that SynGAP is involved in the regulation of AMPAR synaptic targeting. To test this hypothesis using an independent method, we measured the number of GluR1- and GluR2,3-positive clusters in hippocampal neurons in which SynGAP was decreased using SynGAP-specific siRNA. Figure 7C demonstrates that SynGAP knockdown significantly decreased the number of GluR1 and GluR2,3 synaptic clusters.

Discussion

We investigated the role of the GTPase-activating protein SynGAP in the signal transduction cascade between NMDARs and AMPARs in live hippocampal neurons. We demonstrated that, in the synaptic NMDAR complex of hippocampal neurons, SynGAP and CaMKII are coupled via direct binding to PDZ domains of the multi-PDZ domain protein MUPP1. CaMKII binds MUPP1 only in its Ca2+-free state. In the dormant neuron, SynGAP phosphorylation requires CaMKII activity. Upon activation of NMDARs, Ca2+ enters the synapse and drives SynGAP dephosphorylation. These results suggest that the NMDA-mediated increase in local [Ca2+]i causes dissociation of CaMKII from the SynGAP-MUPP1 complex, which decreases SynGAP phosphorylation (Figure 8).

While this manuscript was under review, Oh et al. (2004) reported that direct SynGAP phosphorylation with CaMKII resulted in a moderate increase of SynGAP activity and stimulation of cultured neurons with NMDA resulted in an increase of SynGAP serine 765 and 1123 phosphorylation. There are several potential explanations for this apparent contradiction with our SynGAP phosphorylation data. First, the phosphorylation that we observed in live hippocampal neurons might not be the
Figure 7. Increased AMPARs in Cultured Hippocampal Neurons after Disruption of the MUPP1-SynGAP Interaction

(A) Potentiation of miniature AMPA EPSCs. The traces are examples of mEPSCs recorded from hippocampal neurons in culture with the patch pipette containing 5 μM PDZ13 peptide. Right plot illustrates averaged traces of EPSCs after analysis of 500 consecutive events, monitored 5 and 15 min after the beginning of patch recording. Lower plots show the averaged amplitude and frequency of mEPSCs recorded in the presence of peptides in the patch pipette (n = 4). Data were normalized to the mean values obtained during the first 2 min of patch clamp recording.

(B) AMPAR responses induced by short (100 ms) local application of AMPA to the soma of the neuron (n = 4). Traces illustrate responses obtained between 5 and 15 min of patch clamp recording from a neuron filled with 5 μM PDZ13 peptide. Triangles indicate the time of agonist application. Plots display averaged (n = 4) data. All values shown in (A) and (B) that were obtained with peptides PDZ13 and SynGAP111 after 15 min of recording are significantly different from those obtained with PDZ12 and SynGAP49.

(C) Disruption of the MUPP1-SynGAP interaction increased and siRNA-mediated SynGAP knockdown decreased the number of AMPAR clusters in cultured hippocampal neurons. (Top panel) Images of GluR1, NR1, and PSD-95 clusters in 16 d.i.v. hippocampal neurons. (Lower panel) Effect of cell-permeable fragments of MUPP1 and SynGAP (5 μM, 30 min exposure, n = 4) and SynGAP/siRNA (5–6 days posttransfection, n = 3) on the number of GluR1, GluR2/3, PSD-95, and NR1 clusters. “Bic” designates neurons stimulated with bicuculline. Asterisks indicate values significantly different from control p < 0.05.

result of direct CaMKII phosphorylation, but may be mediated by an unidentified CaMKII-dependent kinase bound to the same MUPP1 complex (e.g., the Unc51.1 kinase that was recently proposed to directly interact with SynGAP [Tomoda et al., 2004]). Second, Oh et al. have detected hyperphosphorylation of SynGAP-β that is directly bound to CaMKII (Li et al., 2001), while our data describe the behavior of SynGAP-α. Finally, the experimental conditions in the two sets of experiments are quite different; we stimulated neurons with glutamate and bicuculline (versus NMDA) for 3 min (versus 15 s) and measured total 32P incorporation (versus specific serine phosphorylation). Oh et al. used cultures of mice cortical neurons, whereas we studied primary cultures of rat hippocampal neurons. Further experiments are needed to resolve these differences.

The binding of SynGAP to MUPP1 is critical for SynGAP phosphorylation and the regulation of downstream pathways. Disruption of this complex with specific peptides resulted in SynGAP dephosphorylation, inactivation of P38 MAPK, and an increase in the number of synapses containing functional AMPARs. SynGAP’s regulation of p38 MAPK activity and AMPAR subunit targeting to synapses were confirmed by our experiments with siRNA-mediated SynGAP-α knockdown. Together with our finding that SynGAP more potently ac-
The third surprising finding is that SynGAP, despite its closer homology to RasGAPs, is a much better GAP for Rap than Ras. This is supported by our direct in vitro measurements of SynGAP regulation of Rap and Ras GTPase activity. This dual Ras/RapGAP activity is not unique for SynGAP. The RasGAP-related protein GAP^Bud2 has been reported to stimulate the GTPase activity of both Ras and Rap1 (Cullen et al., 1995). In line with these observations, Bud2 from Saccharomyces cerevisiae is homologous to the RasGAP domain but acts on Bud1p/Rsr1p, a putative yeast homolog of Rap1 (Park et al., 1993).

The finding of SynGAP RapGAP activity is especially important to the model of Figure 8. We demonstrated that either NMDAR-mediated Ca$_{2+}$ influx or disruption of the SynGAP-MUPP1 complex resulted in SynGAP dephosphorylation. We hypothesize that dissociation of the SynGAP-MUPP1 complex with specific peptides mimics NMDAR-dependent SynGAP regulation without affecting other NMDAR-activated pathways. If this hypothesis is correct, then dephosphorylation activates SynGAP, which in turn inactivates Rap. Our finding further supports the suggestion that SynGAP knockdown (equivalent to activity attenuation) increased p38 MAPK activity, while SynGAP dephosphorylation had the opposite effect. Inactivated Rap no longer drives p38 MAPK, and as a result, AMPARs are no longer being actively removed from the synapse. This model is consistent with the results of Zhu et al. (2002), who demonstrated that p38 MAP kinase is activated by Rap, not Ras, and that Rap-dependent p38 MAPK activity promotes the removal of AMPAR subunits from synapses. However, this model does not agree with the slight increase in AMPAR number found in cultured neurons from SynGAP^−/− mice (Kim et al., 2003). The latter may be a developmental effect, since siRNA-mediated SynGAP^α knockdown in cultured hippocampal neurons results in a significant decrease of both GluR1 and GluR2,3 subunit synaptic clusters.

All of the results described in this paper are related to one of the SynGAP isoforms, SynGAP^α. The fact that both isoforms directly (Li et al., 2001) or indirectly (via MUPP1; data presented here) bind CaMKII emphasizes the importance of SynGAP-CaMKII proximity. The existence of two separate SynGAP-CaMKII complexes suggests that the two SynGAP isoforms may regulate separate pathways.

Our immunofluorescent study demonstrated that SynGAP-MUPP1 disruption increased the number of GluR1 clusters, suggesting that SynGAP activity affects trafficking of the AMPAR GluR1 subunit. GluR1 trafficking depends on Ras-regulated ERK MAPK (Zhu et al., 2002). Since SynGAP/MUPP1 dissociation and siRNA-mediated SynGAP^α knockdown did not change ERK activity, SynGAP^α may affect other pathways regulating the number of AMPARs in synapses (e.g., PI3K pathway [Man et al., 2003]).

In summary, the SynGAP^α-MUPP1-CAMKII complex is a component of the NMDAR supramolecular structure in hippocampal pyramidal neurons. The integrity of this complex is critical for synaptic NMDAR-dependent AMPA receptor trafficking.
Experimental Procedures

Yeast Two-Hybrid Screening
Sequences encoding the PDZ domains of MUPP1 were selected using the Swiss Institute for Experimental Cancer Research (ISREC) ProfileScan software. CDNAs encoding each of the 13 PDZ domains of human MUPP1 were subcloned into the Gal 4 binding domain fusion vector pGBK7 (BD-Clontech). These constructs were used for screening the human brain library (Matchmaker pACT2, Clontech) expressed in AH109 yeast. The PDZ21 bait contained bases 5917–6213 (amino acids 1973–2071) of human MUPP1 (accession number NP_003820).

cDNA Constructs and Recombinant Proteins
Human MUPP1 PDZ domain sequences were subcloned into pET42.1 (Novagen) and expressed in BL21TnlLyS3 (Novagen) bacteria. GST fusion constructs of H-Ras and human Rap1A, Rap1B, Rap2A, and Rap2B were made by subcloning the coding sequences (obtained from Guthrie cDNA Resource Center) into pGEXAT (Amer sham Bioscience) and were expressed in BL21 CodonPlus bacteria (Stratagene). GST fusion proteins were affinity purified on a glutathione one resin (Amer sham Bioscience).

His-Ha-tagged TAT fusion constructs were made by subcloning the corresponding PCR fragments in-frame with the 6His-Ha-TAT sequence into a HA-TAT vector (gift of Steven Dowdy, HHMI, UCSF). Fusion peptides were expressed in BL21TnLyS3 bacteria (Novagen) and solubilized in buffer A (6 M urea/20 mM HEPES [pH 8.0]/100 mM NaCl). Cellular lysates were loaded on a 2 ml Ni-NTA column (Qiagen) in buffer A plus 10 mM imidazole, washed, and eluted with 0.2 M imidazole in buffer A. Proteins were bound to HiTrapQ or HiTrapSP (TAT-PDZ29) 1 ml resin (Amer sham Bioscience), washed with urea-free buffer, and eluted with Buffer B (0.5 M Na carbonate, 1 M NaCl [pH 11]). Finally, proteins were desalted on a Hitrap desalting column (5 ml, Amer sham Bioscience) equilibrated with buffer C (50 mM Na-HEPES, 100 mM NaCl, 10% Glycerol [pH 7.5]). Protein stock concentrations were 200–500 μM. 6xHis-Ha-peptide constructs without TAT were made by excision of the TAT-encoding sequences from the constructs and the proteins were expressed and purified as described above.

For in vitro translation and mammalian cell expression, coding sequences or fragments of human MUPP1 (made by PCR) and rat SynGAPα (gift of Richard Huganir, HHMI, Johns Hopkins) were subcloned in-frame in a modified pcDNA6 vector containing the N-terminal fusion for an HA- or FLAG-tag sequence. Coding sequences of rat CAMKIIα and -β, rat PSD-95, and rat CaMKII were subcloned into pcDNA3.1. Purified bovine brain CaMKII was purchased from Upstate Biotechnology (Lake Placid, NY).

[8]S-labeled proteins were made with the T7-TNT system (Invitrogen) and [35S]-methionine according to the manufacturer’s protocol. For nonlabeled proteins, [35S]-methionine was substituted with 1 mM unlabeled methionine.

Cell Cultures and Transfections
HEK293T cells were grown in DMEM/F12 media supplemented with glycine, Na-hypoxanthine, penicillin/streptomycin, and 10% FBS. Cells were transfected using Lipofectamine 2000 (Invitrogen) and cultured for 48 hr. Neurons from 18-day-old rat embryos were dissociated in trypsin and plated on coverslips coated with poly-L-lysine in minimal essential medium (MEM) with 10% NU serum (BD Biosciences) at densities of 30,000 cells/cm² (Brewer, 1995). On days 7 and 11 of growth in vitro (d.i.v.), half the medium was changed to MEM with 2% B27 supplement (Invitrogen). For biochemical experiments, neurons were grown for 14 days in 10 cm dishes covered with poly-L-lysine at a density of 4×10⁴ cells per dish.

siRNA was designed and produced by Ambion to a unique region of SynGAPα not present in the SynGAPβ sequence (bases 3605–3623 of AF058790 coding sequence). Double stranded siRNA (200 nM) was transfected into 11 d.i.v. neurons using Lipofectamine 2000. Nonsilencing double stranded RNA (Ambion) was used as a negative control. The relative amount of SynGAP in transfected neurons was quantified by WB of cell lysates using a chemiluminescent imager LAS-1000 (Fujifilm). All values were normalized to PSD-95 content.

Antibody, Immunoprecipitation, and Pull-Down Assays
Rabbit MUPP1 antibodies were made against GST fusions containing amino acids 460–535 (αMpdz2) or 1715–2040 (αMpdz4) of human MUPP1 and were affinity purified. Both antibodies recognized Flag-MUPP1 expressed in HEK293T cells (Western blot) and immunoprecipitated it. αMpdz2 was specific for immunofluorescent (IF) recognition of Flag-MUPP1 expressed in COS-7 cells (data not shown). Rabbit SynGAP antibody (Upstate Biotechnology) was used for SynGAP Western blot (WB), immunoprecipitation (IP), and IF. This antibody was made to the last 20 amino acids of the SynGAPα splice variant and did not recognize SynGAPβ. We used mouse monoclonal PSD-95 antibody (Upstate Biotechnology) for WB and IF, mouse monoclonal CaMKIIα and -β (BD transduction Laboratories), mouse NR1 antibody (C-terminal, Upstate Biotechnology) for WB, rabbit polyclonal NR1 antibody (AB1516, Chemicon) for IF, rabbit polyclonal GluR1 (Chemicon) and GluR2/3 (Upstate Biotechnology), rabbit polyclonal phospho-ERK1 and -2 and phospho-p38 MAPK (Cell Signaling Technology, Beverly, MA), mouse monoclonal MAP2 antibody (Sigma), mouse monoclonal MZ-FLAG antibody (Sigma), and mouse monoclonal HA antibody (Santa Cruz).

For pull-down assays, 5 μl of in vitro translated GST-SynGAP was incubated for 1 hr at 4°C with 1 μg of GST-PDZ9, -12, or -13 bound to glutathione beads in 300 μl RIPA buffer (20 mM Tris-CI [pH 8.0], 150 mM NaCl, 1% Na-Cholate, 0.1% SDS), washed with RIPA buffer, and solubilized in SDS sample buffer for 30 min. The reaction was diluted in 200 μl RIPA, immunoprecipitated with the appropriate antibody, and the precipitate was washed with RIPA buffer.

Transfected cells were solubilized in lysis buffer (50 mM Tris-CI [pH 8.0], 150 mM NaCl, 1% Triton X-100) supplemented with protease inhibitor cocktail (PIC, Roche), immunoprecipitated with the indicated antibody, and washed with lysis buffer.

Six- to eight-week-old rat brain P2 microsomes, synaptosomes, and PSD were isolated according to published procedures (Carlin et al., 1980) and solubilized in alkaline 1% sodium desoxycholate followed by dilution in 1% Triton X-100 as described (Luo et al., 1997). Solubilized protein (80 μg) was immunoprecipitated and probed on Western blot with the indicated antibodies. For all antibodies used in the immunoprecipitation experiments, negative controls were verified by antigen preabsorption. Also, all immunoprecipitating antibodies were tested for cross-reactivity with in vitro-translated communiprecipitated molecules. Both control tests confirmed antibody specificity in immunoprecipitation assays and the absence of cross-reactivity of immunoprecipitating antibody.

Immunocytochemistry and Confocal Microscopy of Cultured Hippocampal Neurons
Three hours before all immunocytochemical experiments, 1 μM tetrodotoxin (TTX), 40 μM 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), 100 μM 2-amino-5-phosphonovalerate (APV), and 5 μM nimodipine were added to neurons unless otherwise specified. Peptides (5 μM) were presented in culture media supplemented with the same inhibitors. To stimulate neurons with biccuculline, the media was replaced with one containing the following: 10 μM biccuculline and 10 μM glycine, 5 μM nimodipine (no TTX, CNQX, and APV added). After incubation with 1 μM in vitro translated biccuculline (5–5 min) neurons were fixed with 4% formaldehyde, permeabilized with 0.2% Triton X-100, and blocked by 10% goat serum in PBS. Labeling was performed with mouse monoclonal PSD-95 antibody and one of the following rabbit antibodies: GluR1, GluR2/3, NR1, or SynGAP. Cy3-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch Laboratories, Inc. West Grove, PA) and Alexa-488-conjugated goat anti-mouse IgG (Molecular Probes) were used as secondary antibodies. Images were acquired with an Olympus Fluoview-500 confocal microscope (60×, 1.4 objective, zoom 4). To quantify the distribution of clusters of neurons, we first focused on dendrites of neurons imaged with the fluorescent channel restricted to the PSD-95 label. Fluorescent images of GluR1, GluR2/3, or NR1 were then acquired. Cluster number and brightness were analyzed with the ImageJ Imaging System (Universal Imaging, Westchester, PA). Ten neurons were analyzed from each experiment (three to four dendritic regions for each neuron). ERK1, ERK2, and...
p38 MAPK activity in cultured hippocampal neurons was measured by immunofluorescent staining of neurons using antibodies that specifically recognized the active (phosphorylated) forms of ERK and p38 MAPK as described (Krapivinsky et al., 2003).

SynGAP In Vivo Phosphorylation Assay
Culture media was replaced with prewarmed, O2/CO2-saturated phosphorylation media containing phosphate-free MEM (ICN) supplemented with glutamine, pyruvate, and HEPES. This media also contained TTX (1 μM), CNQX (40 μM), APV (100 μM), MK801 (10 μM), and nimodipine (5 μM), unless otherwise specified. After 1 hr, the culture media was replaced by the same media but containing [32P]-orthophosphate, (2 μCi/ml, 6000 Ci/mmol, Perkin Elmer), and neurons were metabolically labeled for 1 hr. Neurons were stimulated for 3 min before lysis with 50 μM glutamate; 10 μM bicineulline, plus 10 μM glycine; or with 65 mM KCl (Tyrrole’s solution containing 75 mM NaCl, 65 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 25 mM Na-HEPES, 10 mM Glucose, 0.1% BSA) at room temperature. For glutamate stimulation, media was replaced with one not containing CNQX, APV, and MK801 (and TTX for bicuculline stimulation) or CNQX and nimodipine for KCl stimulation. Neurons were then lysed for 10 min in lysis buffer containing 20 mM Na-HEPES (pH 7.5), 10 mM EDTA, 0.1 mM DTT, 0.5 mg/ml BSA. Purified GST-H-Ras and GST-Rap GTPases (0.2 μg/ml) were loaded with GTP (0.2 μM final concentration) were loaded with GTP (0.2 μM [γ32P]-GTP (6000 Ci/mmol, Perkin Elmer), and quenched with perchloric acid (5% final concentration; T 4°C). The inorganic [32P] was measured as described (Cowen et al., 2000).

Electrophysiological Recordings
Neurons (12–15 d.i.v.) were continuously perfused with an extracellular solution containing 140 mM NaCl, 2.5 mM KCl, 20 mM HEPES, 20 mM D-glucose, 2.0 mM CaCl2, 2.0 mM MgCl2, 0.01 mM bicineulline, 0.005 mM nimodipine, and 0.001 mM tetrodotoxin (pH 7.4). AMPA (100μM) dissolved in extracellular solution was pressure applied (Picospritzer) via a patch pipette placed 5–10 μm from the soma. TAT-conjugated peptides were perfused onto neurons via the recording chamber. Recording electrodes (4-6 MΩ) were pulled from borosilicate glass (TW150F-15; Narishige, Japan) and filled with solution containing 115 mM Cs methanesulfonate, 20 mM CsCl, 10 mM HEPES, 2.5 mM MgCl2, 4 mM Na3-ATP (adenosine triphosphate), 0.4 mM Na-GTP (guanosine triphosphate), 10 mM Na-phosphocreatine, and 0.6 mM EGTA (pH 7.2). Recordings were made using the Axopatch-200A amplifier and pCLAMP acquisition software (Axon Instruments). Series resistances (6–10 MΩ) were compensated. Data were low-pass filtered at 2 kHz and acquired at 10 kHz. AMPA receptor-mediated EPSCs were analyzed with MiniAnalysis software (Synaptosoft, Inc. Decatur, GA).

Statistical Analysis
All population data were expressed as the mean ± SEM. The Student’s t test was employed to examine the statistical significance of the differences between groups of data.

Acknowledgments
We thank N. Otmaikov for stimulating discussions and helpful suggestions; and we thank Y. Maniasian and C. Pellegrino for technical assistance.

Acknowledgments

References
synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691.

Supplemental materials

Supplemental Figure 1. SynGAP sequence essential for PDZ13 binding. A. The last 3 C-terminal amino acids of SynGAP were important for its interaction with MUPP1 PDZ13. GST-PDZ13 bound in vitro-translated wild type (WT) 35S-SynGAP, but binding of the mutant 35S-SynGAP (Q1246stop- 3 C-terminal amino acids removed) was significantly decreased. B. The C-terminal 111 amino acids of SynGAP were essential for the inhibition of the MUPP1-SynGAP interaction in vitro. Full length 35S-SynGAP, 35S-TAT-SynGAP peptides containing 33, 49, 75 or 111 C-terminal amino acids, and non-labeled FLAG-MUPP1, were translated in vitro. The MUPP1-SynGAP complex was immunoprecipitated by αFLAG in the presence of a 20-fold molar excess of the corresponding TAT-SynGAP peptides.

Does SynGAP directly bind PSD-95?

Two groups have independently suggested that SynGAP interacts with PSD-95 based on an in vivo yeast interaction assay and immunoprecipitation from native tissues (Chen et al., 1998; Kim et al., 1998). To verify the specificity of the MUPP1 and SynGAP binding domain peptides (MUPP1-PDZ13, SynGAP-111), we tested the peptides’ effects on the SynGAP-PSD-95 interaction. Surprisingly, SynGAP-111 did not bind PSD-95 in vitro under conditions in which SynGAP directly interacted with MUPP1 (Suppl., Fig. 2A). Under the same conditions, in vitro-translated PSD-95 strongly interacted with the C-terminus of NR2B (Suppl., Fig. 2A), thus providing a positive control (Kornau et al., 1995). These results show that SynGAP interacts in vitro with MUPP1 much more strongly than with PSD-95, and may suggest that SynGAP preferentially interacts with MUPP1 over PSD-95 in vivo. Although SynGAP co-immunoprecipitated both MUPP1 and PSD-95 from brain lysates, TAT peptides containing MUPP1-PDZ13 and SynGAP-
111 dissociated MUPP1, but not PSD-95, from the native SynGAP rat brain synaptosome complex (Suppl., Fig. 2B). The TAT-peptide fused with the third PDZ domain of PSD-95, which interacted with SynGAP in a yeast two hybrid essay (Kim et al., 1998), did not affect any of the interactions tested (Suppl., Fig. 2B). Thus, even if SynGAP directly binds PSD-95 in synapses, their interaction should not be disrupted by TAT-binding domain peptides derived from MUPP1 and SynGAP.

Supplemental Figure 2. SynGAP-111 and MUPP1-PDZ13 peptides do not disrupt the SynGAP–PSD-95 complex. A. PSD-95 did not interact with SynGAP in vitro. In vitro translated 35S-labelled MUPP1 or PSD-95 were co-immunoprecipitated with HA-SynGAP using αHA. Binding of PSD-95 to the FLAG-NR2B C-terminal fragment (amino acids 1136-1482 containing the PSD-95-binding domain (Kornau et al., 1995) was used as a positive control. B. TAT-PDZ13 and TAT-SynGAP111 did not disrupt the SynGAP-PSD-95 complex. SynGAP was immunoprecipitated from solubilized rat brain synaptosomes in the presence of TAT-peptides and probed on Western blot with αMUPP1, αPSD-95 and αSynGAP.

Supplemental Figure 3. Dissociation of the MUPP1-SynGAP complex in neurons did not affect SynGAP synaptic localization. A. Immunofluorescent images of neurons incubated for 1h with 5µM TAT-PDZ12 or TAT-PDZ13 and revealed with αSynGAP-α and αPSD-95. B. Population results demonstrating that TAT-PDZ13 did not affect the average SynGAP cluster number (per standard dendrite length) and fluorescence intensity. All data normalized to the values obtained for untreated neurons.

Supplemental Figure 4. Determination of the MUPP1 PDZ domain interacting with CaMKII. 35S-labeled fusion proteins were translated in vitro, co-incubated, and precipitated with FLAG antibody (A) or CaMKII antibody (B, C). 35S images of gels: Panel A demonstrated CaMKIIα co-immunoprecipitation with full length Flag-MUPP1
but not with truncated MUPP1 (PDZ domains 1-7 removed); Panel B shows that CaMKII (unlabelled) predominantly bound the GST-fused PDZ2 domain; Panel C demonstrates that the PSES mutant of the PDZ2 domain (replacing GLGF) did not bind CaMKII.

Supplemental Figure 5. SynGAP-α siRNA reduces SynGAP protein in cultured hippocampal neurons. On the siRNA post-transfection day indicated, SynGAP content in ~0.5x10^6 neurons was quantified by Western blot. The values were normalized to the values obtained for non-silencing RNA-transfected neurons on the same day. After the blot was stripped, proteins were re-blotted with PSD-95 antibody and the SynGAP content was again normalized to PSD-95 content. Non-silencing and SynGAP siRNAs did not significantly affect PSD-95 content (not shown).
A

HA-SynGAP IP 1/3 input FLAG-NR2B IP

SynGAP +MUPP1 MUPP1 SynGAP +PSD95 PSD95 MUPP1 PSD95 SynGAP PSD95 NR2B NR2B +PSD95

B

MUPP1

PSD95

SynGAP

None PDZ12 PDZ13 SynGAP111 PSD95

Krapivinsky et al. Suppl. Fig. 2
SynGAP-α

PSD95

Normalized cluster number

Normalized cluster brightness

TAT-PDZ12

TAT-PDZ13

Krapivinsky et al. Suppl. Fig. 3
A

CaMKII +

<table>
<thead>
<tr>
<th>MUPP1</th>
<th>ΔMUPP1</th>
<th>MUPP1 ΔMUPP1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLAG IP 1/2 input

FLAG-MUPP1 (PDZ 1-13)
FLAG-ΔMUPP1 (PDZ 8-13)
CaMKIIα

B

CaMKII + − + + + − − + − − − −

GST-PDZ bound

GST-PDZ input

PDZ domain # 1 2 3 4 5 6 7

C

CaMKII-bound 1/2 input

GST-PDZ2

WT GLGF>PSES WT GLGF>PSES

Krapivinsky et al. Supplemental Fig. 4
SynGAP

Days after siRNA transfection

Krapivinsky et al. Supplemental Fig. 5